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Abstract 

This paper presents a single frame algorithm for the spin-axis orientation- 
dete-mination of spinning spacecraft that encounters no ambiguity problems, as well as a 
simple Kalman filer for continuously estimating the full attitude of a spinning spacecraft. The 
later algorithm is comprised of two low order decoupled Kalman filters; one estimates the 
spin axis orientation, and the other estimates the spin rate and the spin (phase) angle. The 
filters are ambiguity free and do not rely on the spacecraft dynamics. They were successfully 
tested using data obtained from one of the ST5 satellites. 

I. Introduction 

In the early days of space exploration, the use of spinning satellites was prevalent for 

spacecraft (SC) stabilization [Reference 1, Chapters 10, 111. In that era only batch algorithms 

were used in order to determine the attitude of the spinning satellites. Starting in the late 

1970s, the focus has shifted from spinning satellites to three-axis stabilized SC [Reference 1, 

Chapter 121. Considerable effort was invested in devising accurate algorithms for attitude 

determination (AD). In particular, a variety of recursive AD algorithms were introduced. As a 

result, spinning SC development and their resulting ground system development stagnated. In 

the 199Os, shrinking budgets made spinning SC an attractive option for science. The attitude 
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requirements for recent spinning SC are more stringent and the ground systems must be 

enhanced in order to provide the necessary attitude estimation accuracy, and yet suitable 

recursive algorithms for spinning SC did not exist. Therefore when the use of spinning SC re- 

emerged, efforts w&e made to develop such algorithms. Bake?, for example, developed a 

Kalman filter (KF) based on a dynamic model presented by Markley, Seidewitz and 

Nicholson3. The attitude was represented by Euler angles. The first derivatives of the states 

were nonlinear (trigonometric) functions of the states themselves. Simplifying assumptions 

had to be adopted in order to use the dynamics model in an extended KF. Sedlak4 used 

Markley Variables’ to describe the SC attitude dynamics: These variables are slowly varying 

which facilitates the filter state tracking and estimation, but the models which have to be used 

in the KF are quite complicated. Bar-Itzhack and Harman used a pseudo linear filter6 to do the 

same7. The philosophy that governed the newly developed recursive filters for AD of spinning 

SC was an extension of the concepts on which three-axis stabilized AD algorithms were 

founded. Accordingly, other than [7], there was no separation between the spin axis 

orientation states and the spin angle states. s, the slowly changing dynamics of the spin 

axis orientation was combined into one dynamics model that included the fast changing spin 

(phase) angle. 

The present algorithm is based on the premise that the parameters which describe the 

direction of the spin axis orientation in inertial space vary slowly even when the SC nutates 

and precesses. The spin (phase) angle, on the other hand, changes fast but stays almost at a 

constant rate per a single revolution and is decoupled from the other axes. In fact, this is the 

classical approach to spin-axis orientation determination (ORD) [Reference 1 , Chapters, 10, 

111. (A good exposition of the difference in approach to three-axis AD and spin-axis ORD is 

presented in Reference 8.) This realization enables the decoupling of the recursive AD 

algorithm into two simple low-order filters that are independent of the SC dynamics. 
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There are two approaches to spin-axis ORD. One relies heavily on the solution of 

trigonometric functions [Reference 1, Chapters 10, 111. The other approach is a vectored 

approach’. *. This is the approach adopted in the present work; however, unlike in References 

8 and 9, here we develop two recursive algorithms, one for obtaining a single frame solution 

and the other is a novel Kalman filter for time varying ORD which is based on multiple 

measurements performed at different time points. Also, here the components of the spin axis 

are found as projections on the axes of the Geocentric Inertial Coordinates (GCI) rather than 

projections on the measured directions and their cross product, as presented in Eq. (1) of [9] ,  

Eq. (ll-3e) of [l], and Eq. (2) of [8]. In the present work we are not concerned with the 

measurement techniques. This topic can be found in other works [see e.g. References 1 and 

lo]. 

As is well known, when only two vector measurements are available for spin axis 

Om, there exist two possible solutions [see e.g. Reference 1, Chapters 10, 11 and Reference 

81. The cause of this ambiguity is explained and a solution is proposed, which does not rely on 

cumbersome spherical geometry solutions. 

In the following section we discuss the geometry of the ORD problem. The ambiguity 

problem generated by the existence of two possible solutions is explained in Section 111 

< 

whereas in Section IV we present a simple vector solution to the ambiguity problem. Section 

V presents a simple low order Kalman filter (KF) for the spin axis ORD, and an even simpler 

one for estimating the spin (phase) angle. Results are presented in Section VI, a discussion of 

these results is given in Section VII, and the conclusions from this work are presented in the 

last section. 
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II. Connections between the Spin Axis Orientation and Vector Measurements 

Consider Fig. 1 where the sun sensor measurement is expressed by the components of 

the unit vector in the sun direction, resolved in the GCI coordinate system. These components 

are sIX , sIy and s,, . Similarly, the normalized three-axis magnetometer (TAM) measurement 

is expressed by the three components, m, , mIy and m, (the TAM vector, m , is shown 

in the figure but its components are not shown). We want to find the direction of 2, in the 

GCI coordinates expressed by its components along the coordinate axes. When we know 

these components, we can certainly express the direction, of Z, by the angles a and p , if 

required. Denote the components of Z, in the inertial coordinates, GCI, by x, y and z. In the 

filter that will be presented later, we estimate Z, where Zl = [x y z] . 

i 

Fig. 1: The Geometry of the Spin Axis and the Sun Vector 

Since the sun angle, 'p, , is measured, we can calculate its cosine. Let us denote this 
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cosine by Us ; that is 
us = coscp, 

We note that the cosine of cp, , which is the angle between the sun vector and zb , is nothing 

but sbz . On the other hand the cosine of cp, is equal to the dot product of 2, and s ; hence we 

can write 

Like with the sun sensor measurement, the cosine of the angle between the normalized TAM- 

vector and 2, is simply mbz (see Fig. 2); that is, 
* 

cos(p, = mbz 
Denote this cosine by Urn 

u, = coscp, 

Like with the sun sensor, we know that 2, + m = cos 'p, , hence 

U, = mIxx + m,y + m,z 

Fig 2: The Illustration of cp, 

(3) 

(4) 

(5)  

Combining Eqs. (2) and (5) into one matrix equation yields 
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HI. The Ambiguity Problem - 

Equation (6) can be satisfied by two solutions. This is because, as is well known9”’*, 

the spin axis can lie along two different lines. As shown in Fig. 3, these lines are formed by 

the intersection of two cones; namely, the sun cone and the magnetic field cone. These cones 

are described as follows. The main axis of the sun cone is the sun line, s , and the main axis of 

the magnetic field cone coincides with the normalized mapetic field vector, m . 

Fig. 3: The Geometry that Depicts the Two Possible Solutions. 

P1 

m 

0 
Fig. 4: Upper View of the Two Possible Solutions. 
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The sun cone is generated by a rotation about the sun direction of a line that forms the cone 

half-angle cp, with the sun line. Similarly, the magnetic field cone is formed by a rotation 

about the magnetic field line of a line that forms the cone half-angle <p, with the magnetic 

field line. The two possible solutions are the line from 0 to p, and the line fiom 0 to p2 (the 

lines themselves are not shown in the figure). An upper look at points p l ,  p2 , s and m is 

presented in Fig. 4. The existence of two possible solutions can be demonstrated through the 

following example. 

Suppose that Z,, , the spin axis unit vector expressed in the GCI coordinates, is as follows 

(13.a) 
0.612 
0.354 
0.707 

Also suppose that 

. sI =E:] (13.b) 
0.162 

[ 0.808 ] m, = -0.566 (13.c) 

where s,and m, are, respectively, a unit vector in the sun direction, and a unit vector in the 

direction of the magnetic field, both expressed in the GCI coordinates. Then the matrix H ,  

which is embedded in Eq. (6), and is defined as 

takes the value 
-0.176 0.44 0 . 8 8 ~  
0.162 -0.566 0.808 

(13.d) 

(13.e) 

A In this case Us A 2, -sI = 0.67 and U, = Z, m, = 0.471. The following two solutions 

ZbI, = [-0.743 -0.098 0.6621 and Z,,, = [0.612 0.354 0.7071 satisfy Eq. (6). Indeed, 

Eq. (6) takes the following two correct forms 
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-0.176 0.44 
0.162 -0.566 0.808 

0.354 
0.707 

and 

-0.176 0.44 0.88 ] 
0.162 -0.566 0.808 

A way to resolve the ambiguity problem is presented next. 

IV. Ambiguity Resolution 

While other ways to solve the ambiguity problgm also exist [see e.g. Ref. 81, we 

chose a rather simple approach to resolve the ambiguity problem, and indeed to solve for ZbI , 

which avoids tedious spherical. geometry calculations. Our solution to the problem is as 

follows. 

Let sI and m, be, respectively, unit vectors in the direction of the sun and the 

magnetic field resolved in the GCI system. Similarly let sb and mb be the same in the body 

system. Let the transformation matrix from the body to the GCI coordinate system be denoted 

by DF , then obviously 

[ I m~ I sIxml]=DF[ 'b I mb I sbxmb] (14.a) 
let 

then 
C = [  sI I mI I sI xm,] (14.b) B = [  s b  1 mb I sbxmb] (14.~) 

D: = CB-' (14.d) 

Now z b b  , which is Zb , resolved in body coordinates, is given by ZbbT = [o 0 11, and Since 

then 
(14.e) 

(14.f) 
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where dp3 is the third column of Dp . Note that the two vector measurements have to be taken 

at certain time points; namely, at times when the sun sensor acquires the sun. 

The method proposed here is demonstrated through the following example. Let &I, 

s, and m, be as before. Suppose that the SC is oriented such that 

0.875' 

0.471 

0.227 i 0.67 ~ 

sb = -0.706 (15.a) and (15.b) 

where s, is s resolved in the body coordinates and m, is the m vector also resolved in the 

body frame. Computing the C , B , and Dp matrices defined: respectively, in Eqs. (14.b, c 

and d) yields 

0.227 0.875 -0.408 

0.67 0.471 0.644 

-0.176 0.162 0.854 
-0.706 0.113 0.48 ] (15.d) 

0.88 0.808 0.028 

- 
-0.242 0.753 0.612 
-0.768 -0.534 0.354 
0.593 -0.385 0.707 

(15.e) 

It is seen that the third column of DF is 2, given in Eq. (1 3 .a) which is Zb12, the second of 

the two solutions, found before, of Eq. (6). It should be noted that DF can be found using the 

TRIAD alg~rithm"~'~ where unlike in Eq. (14.d), there is no need to invert a matrix. We 

chose to use the present method for computing Dp because TRIAD is a more elaborate 

routine whereas, being a 3 x 3 matrix, the inverse of B can be computed analytically. 

V. A Novel Kalman Filter for Determination of the Attitude 

The filter that is presented here consists of two linear reduced-order filters. The first 

filter estimates the spin axis orientation, Zbl, whereas the second filter estimates the spin 
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(phase) angle. Once the initial estimate of Z,, is close to its correct value, the filter 

recursively produces a better estimate of it. The purpose of the discussion of the ambiguity 

and its resolution presented in the preceding sections was aimed at supplying the correct 

initial estimate, free of ambiguity. 

V.1 A simple Low-Order KF for spin axis determination 

Recall Eq. (6) 

Since Us and U,are the result of measurements, we add to the last equation some 

appropriate zero-mean white-noise components v, and v, , and obtain the measurement 

equation 

(1 6.9) 

Since between measurements the direction of the spin axis of a spin stabilized SC does not 

change much, it is appropriate to model the dynamics of its components between 

measurements as a Markov proce~s'~. That is 

(16.b) 

Eqs. (16) constitute a measurement model and a dynamics model which are suitable for a 

simple linear Kalman filter. 

Once x, y and z are estimated, the estimates of the declination angle, p, and the right 

ascension angle, B , are computed as follows 

(1 6.c) 
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It is evident fiom Fig. 1 that 

As seen in Fig. 5; each time the sun is acquired by the sun sensor, y is equal to 9,, or 9, 

plus multiples of 2n. Therefore, the phase angle, y ,  has to be determined only between sun 

measurements. This is accomplished by prediction using the estimated spin rate. In order to, 

obtain superior prediction, we use a two state KF in which, during the measurement update 

stage, we improve the zero sun angle estimate and the spin rate. During the .prediction phase 

we compute the best estimate of the phase angle. The dynamics equation of this filter is 
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2n+SS =[1 O][~]+~~ 

The value of SS is determined from the measurement sb . From Fig. 6 it is obvious that 

9, = tan-' [ 2) 

Fig 6: The Geometry of Bs 

Also at sun crossing we compute 

(17.b) 

(17.c) 

(17.d) 

where tn is the present sun crossing time, and tnp1 is the previous one. This "measurement" of 

the spin rate is related to the state vector in Eq. (1 7.a) by the measurement equation 

(17.e) 

Consequently, at the sun crossing time, one combined measurement update is performed using 

the measurement equation 

Once a measurement update is performed we subtract 2n from y to start a new cycle modulo 

2n. 
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ata were u 

the measurements were 

were the instants in which the sun sensor acquired the sun. 

v1.1 Spin axis filter 

We ran the spin axis filter using the following values. The value of 2, , 2, , and 2, in 

Eq. (16.b) was 3600 sec. The covariance matrix of the driving force noise was 

Q = diag(10e - 4 10e -4 10e - 43. The covariance matrix of the measurement noise 
* 

corresponded to a sun sensor error of 0.1 degree, and that of the magnetometer was 10 

milliGauss, thus R = diag (3 - 10e - 3 2.5 - 10e - 3) . In addition to the filtered, we also 

computed the unfiltered value of Z, in GCI coordinates. This was done using the algorithm 

presented in Eqs. (14). In Fig. 7 we present the filtered and the unfiltered components of z b  

in' GCI coordinates. The filtered values are plotted using the broken lines and the unfiltered 

values are designated by the solid lines. Obviously, the initial value of both vectors is 

identical because both were computed identically. In Fig. 8 we present the angle between the 

filtered and unfiltered unit vectors. 

It turned out that s, did not quite correspond to sI ,  and, similarly mb , did not quite 

correspond to mI . It was assumed that this stemmed from the fact that the measurements 

were not ideal. Another indication to this effect was the difference between the z - element of 

z - eleme 
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Therefore we tried an additional approach to compute the filtered Z, in GCI coordinates. We 

used Eqs. (14.a - d) to compute D; and then we applied to it Singular Value Decomposition 

Fig. 7: The Filtered and Unfiltered Components of Z, in GCI Coordinates. 

0 50 7OO 150 200 2M 300 350 4W 450 
lime [SI 

Fig. 8: The Angular Difference between the Unfiltered and Filtered Vectors. 

in order to obtain DI”,oIr the closest orthogonal matrix to D; . Next we used D;,ort to transform 

sI and m, to s, and m,, respectively, and used these s, and m, as measured vectors in 

Fig. 8: The Angular Difference between the Unfiltered and Filtered Vectors. 

in order to obtain DI”,oIr the closest orthogonal matrix to D; . Next we used D;,ort to transform 

sI and m, to s, and m,, respectively, and used these s, and m, as measured vectors in 
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body coordinates. The filter was then applied to the latter, and the results were termed refined- 

filtered components of Z,. It should be mentioned that the application of the TRIAD 

algorithm to the data would have also rendered an orthogonal Dp ; however, it would not have 

been the orthogonal matrix closest to Dp ; moreover, the result of TRIAD depends on which 

vector of the two, sun or magnetic field vector, is the one used to start the algorithm. We 

plotted the refined-filtered versus the unfiltered spin axis components in Fig. 9. The angular 

difference between the two vectors is plotted in Fig. 10. 
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' 0  50 100 150 200 250 300 350 400 450 
Time [SI 
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Fig. 9: The Refined-Filtered and Unfiltered Components of 2, in GCI Coordinates. 

VI.2 Spin (phase) angle filter 

The filter described in Section V.2 was applied to the sun sensor timing data. The 

value of z, was 36000 sec. The covariance matrix of the white driving noise was 

Q, = diag {l Oe - 4 1Oe - 4). The initial value of 9, was computed according to Eq. (1 7.c), 

and the initial value of the estimated angular rate was chosen to be zero. As measurements we 

used the sb vectors which were used in the refined-filter. The covariance of the measurement 

error, r, , was chosen as 3 - 10e - 6 .  The behavior of the phase angle is described in Fig. 11. 
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The stars designate the value of the estimated 9, at the beginning of a new cycle. In order to 

see the nature of the phase angle, y, only the first few cycles are presented. The estimated 

spin rate is shown in Fig. 12. 

Fig. 10: Angular Difference between the Refined-Filtered and the Unfiltered Vectors. 

Fig. 11: Spin (Phase) Angle Estimate. 
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Pig. 12: Spin Rate Estimate. * 

VII. Discussion 

- As mentioned earlier, there was a discrepancy between the measured sun and the 

measured magnetic field vectors in body on one hand, and their corresponding vectors in the 

GCI coordinates on the other hand. This was obvious. when using these vectors to compute the 

transformation matrix from body to inertial coordinates or vice versa. The discrepancy 

manifested itself in non-orthogonality of the transfonnation niatrix. We attempted to correct 

this discrepancy by using the data to find the DCM that corresponds to each set of 

measurements, compute the orthogonal matrix closest to it, and then use it to transform the 

inertial data to body data, and treat it as the measured data to which we applied the spin axis 

filter. It is impossible to tell which plots better describe the orientation of 2, , because we do 

increased the difference between the filtered and unfiltered 

e was insensitive to the change in the value of Q of that 
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model. Note that the value of R was not a design 

accuracy of the sun sensor and the magnetometer. The 

on the estimates. Like Rof the filter, r, also was not 

rather determined by the accuracy of the sun sensor. 

VIII. Conclusions 

In this work we presented a new recursive filter to estimate the attitude of a spinning 

SC. It is based on the separation of the attitude representation into the representation of the 

spin axis orientation by its components in the GCI system, and the spin (phase) angle about 

this axis. This approach enables the separation of the filter into two low-order simple filters, 

one of which estimated the slowly varying components of the spin axis, and the other 

estimated the phase angle and the spin rate. Even though the spin angle changes fast, its filter 

is very simple because the spin axis and the spin rate are almost constant. Both filters are 

independent of the SC dynamics model, which is one of the factors that make the filters so 

simple. The ambiguity problem is solved using vector calculations, which avoids tedious 

spherical geometry computations. ST5 satellite data were used to test the filters, and the 

sensitivity to filter parameter change was examined. Although there were no data to compare 

the results with, the results indicated that the filters performed well. 
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